Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins.
نویسندگان
چکیده
Solid freeform fabrication (SFF) is recognized as a promising tool for creating tissue engineering scaffolds due to advantages such as superior interconnectivity and highly porous structure. Despite structural support for SFF-based three-dimensional (3-D) scaffolds that can lead to tissue regeneration, lack of cell recognition motifs and/or biochemical factors has been considered a limitation. Previously, recombinant mussel adhesive proteins (MAPs) were successfully demonstrated to be functional cell adhesion materials on various surfaces due to their peculiar adhesive properties. Herein, MAPs were applied as surface functionalization materials to SFF-based 3-D polycaprolactone/poly(lactic-co-glycolic acid) scaffolds. We successfully coated MAPs onto scaffold surfaces by simply dipping the scaffolds into the MAP solution, which was confirmed through X-ray photoelectron spectroscopy and scanning electron microscopy analyses. Through in vitro study using human adipose tissue-derived stem cells (hADSCs), significant enhancement of cellular activities such as attachment, proliferation, and osteogenic differentiation was observed on MAP-coated 3-D scaffolds, especially on which fused arginine-glycine-aspartic acid peptides were efficiently exposed. In addition, we found that in vivo hADSC implantation with MAP-coated scaffolds enhanced bone regeneration in a rat calvarial defect model. These results collectively demonstrate that facile surface functionalization of 3-D scaffolds using MAP would be a promising strategy for successful tissue engineering applications.
منابع مشابه
Layered Composite Model for Design and Fabrication of Bone Replacement
Biological tissues are inherently heterogeneous. The design of 3D tissue scaffolds for tissue engineering application should, if possible, biomimic the complex hierarchy and structural heterogeneity of the replaced tissues. This is particularly true for design of bone scaffolds with structural properties compatible with the spatial heterogeneity and mechanical properties of the replaced tissue....
متن کاملIncreased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration
Background: One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using 3D-printing. Herein, we aimed to determine whether the much tighter control of microstructure of 3DP PLGA/β-TCP scaffolds is more effective in promoting osteogenesis than por...
متن کاملSolid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering.
The field of tissue engineering and regenerative medicine will tremendously benefit from the development of three dimensional scaffolds with defined micro- and macro-architecture that replicate the geometry and chemical composition of native tissues. The current report describes a freeform fabrication technique that permits the development of nerve regeneration scaffolds with precisely engineer...
متن کاملFreeform fabrication of nanobiomaterials using 3D printing
Nanobiomaterials play an important role in nanobiotechnology and have made a great contribution to biomedical research and healthcare. Recent progress in nanobiomaterials has increased demand for multidisciplinary approaches from physical, biological and engineering sciences. Solid freeform fabrication (SFF) technologies are based on layer-by-layer deposition of materials which bring about new ...
متن کاملMechanical performance of three-dimensional bio- nanocomposite scaffolds designed with digital light processing for biomedical applications
Introduction: The need for biocompatible and bioactive scaffolds to accelerate the regeneration and repair of fractured bones has been considered for bone tissue engineering applications during recent decades. The new methods were developed to produce scaffolds to improve the tissue quality, size of cavities, control the porosity and increase the scaffold compressive strength u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 8 7 شماره
صفحات -
تاریخ انتشار 2012